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Improved Low-light Pedestrian Detection
by Dr. Peter Gulden and Dr. Zorawar Bassi

Abstract
Using multiple sensor modalities is becoming a critical 
design requirement in automotive safety systems. The 
reasons are multi-fold, such as having redundancy, 
robustness to adverse weather conditions, challenging 
environment scenes, and improved accuracy due to 
complementary features. The placement and interaction, or 
fusion, of these sensors, can vary widely. We present some 
results from combining radar and image (vision) sensors, 
using low-cost processors that can be placed in various 
locations throughout the vehicle. This could be at the edge 
or in some zonal configuration intermediate to a center 
topology. The sensors are fused for object detection, which 
is far more robust under various environmental conditions, 
than if a single modality was used. Further, the unique 
indie approach for combining several radars leading in a 
cooperative way to enhance the number of detection points 
and full vectoral velocity capability is showcased. Our focus 
for this investigation was pedestrian and bicycle detection in 
an automotive backup scenario, under low light conditions. 
While sensor fusion has required powerful computing 
resources to-date, we show how vision and radar fusion can 
be accomplished with modest processing power to help 
bring the safety benefits of multi-modal sensing to mass-
market vehicles.

Introduction
Today’s vehicles rely on numerous sensors for safety 
reasons, as well as to accommodate various levels of 
automation; ultimately this automation is also aimed at 
increasing safety and providing a more efficient driving 
experience. Camera image sensors are one of the most 
widely used types of sensors, given that they most closely 
resemble human vision – vision being the most fundamental 
human capacity used for driving. Like human vision, 

cameras can be easily impaired, whether due to challenging 
environmental conditions, such as low light or fog, or simply 
because the lens may be obstructed by dirt. Hence cameras 
are often paired with other types of complimentary sensors, 
such as radar, which are immune to those conditions 
that can impair a camera. Radar sensors have their own 
strengths over image sensors, such as providing accurate 
distance and velocity data. The fusion of a camera with 
radar can enhance a safety system by improving accuracy 
and robustness, as well as providing redundancy. 

Perhaps the most widely used camera-based safety system, 
and one of the first to be mandated by regulations, is 
the backup camera. As the development and funding of 
advanced vehicle AI systems, with the goal of full autonomy, 
has greatly increased over the last decade, the simple 
backup camera continues to be the most widely used 
and available safety system. Its simplicity allows it to be 
understood and adopted by drivers of all generations. In 
recent years, the backup camera has expanded to include 
smarts, or some level of AI, where it can detect objects in its 
view, which in turn can signal an emergency braking feature. 
Adding smarts, where the camera provides a decision or 
‘opinion’ on safety, as opposed to simply a picture, greatly 
increases the need for accuracy and robustness. This is 
even more true in tough environment conditions (nighttime), 
where a driver’s own vision may be challenged. Being a 
relatively simple safety system to be fitted inconspicuously 
in a compact area, a backup camera is required to be low 
cost, low power, and small size. These requirements often 
conflict with the smart features, which tend to necessitate 
large sensors and additional processing ICs. The conflict 
is exasperated by the requirement of high accuracy and 
robustness, which in turn needs more ‘smarts’, i.e., more 
processing power.
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In our paper, we return to this most fundamental safety system, the backup camera, with some basic smarts, though 
our results are equally applicable to any “smart” viewing camera around the vehicle (e.g. a side mirror camera system). 
Such smart backup cameras have been available for some time, however, their performance under tough environmental 
conditions, given their low cost, is often suboptimal, limiting the features (such as audio warning, and emergency braking) 
that can be activated. We study these cameras, with the smarts of detecting pedestrians and bicycles, under low light (<10 
lux), where a human may also have difficulty detecting. We then combine the camera with a radar sensor using a simple 
fusion approach and show how performance is improved. Extensive work has been done on multi-sensor fusion, including 
camera and radar fusion; see [1] for a review. The majority of work focuses on the algorithm and architecture, often using 
complex machine learning models more fit for high autonomy, without consideration of hardware implementation and cost. 
A key objective here was to keep the system cost low, keeping in mind the low to mid-priced vehicle. Hence our approach is 
such that all processing can be done on the integrated processor inside the camera, no additional processors are needed 
for the fusion. Aside from the camera, the only additional hardware is the radar front end. As the trend for vehicles to make 
use of multiple sensor types grows, many are also including radar systems, such as corner radars. We make use of the same 
data from any existing vehicle radar system, so as not to add a radar specific for the smart backup application and keep 
the cost low. Our overall pipeline has components similar to [2], however, those authors are focused on a general framework, 
treating the camera and radar as independent detectors, making use of a more complex probability model for fusion, 
independent of any hardware considerations, whereas we start with a small footprint device, and build our architecture 
accordingly, taking only the vision system as the detector. We also present a new approach for combining several radars 
leading in a cooperative way to enhance the number of detection points as well as provide full vectoral velocity. The 
increased detections and full velocity can improve the radar clustering and in turn the fused detection. 

Our paper is organized as follows. We begin with a discussion of the camera system, in particular the processor inside 
the camera on which all computation is done. The right processor and choice of algorithms are critical to keeping system 
cost/power/size low. Next, we present our camera smarts, namely the vision-based pedestrian and bicycle detector. This 
is followed by a discussion of the radar processing pipeline in the section, “Radar Pipeline and Clustering”. Our fusion 
approach is outlined in section, “Simple Fusion Algorithm”, and the results of the fusion showing improved performance are 
presented in section, “Experiments and Results”. “Cooperative Radar” section covers our unique radar offerings, followed by 
conclusions and future improvements.

Camera Processor
The standard backup camera consists of a lens, an image sensor, and some form of a system-on-chip (SoC), which we call 
the camera processor (see Figure 1). The camera processor receives raw data from the image sensor and performs various 
functions to output a live video stream. indie Semiconductor offers several advanced camera video processors geared 
towards the automotive industry, and for the purposes of this paper, we have worked with the GW5x SoC and GW6x SoC 
(currently in development), product lines (see [3] for more information). These processors are highly efficient, low power SoCs, 
targeted for exterior automotive cameras. Figure 1 shows key internal blocks.
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Figure 1: indie Semiconductor’s GW5x/GW6x camera video processor block diagram.

The GW5x does not include the FFT block, all other blocks are common to both GW. x and GW6x, with variations in features 
and performance. Raw data from the image sensor comes in through the MIPI interface, it is processed by the image sensor 
processing (ISP) block (this does de-Bayer, noise reduction, HDR, auto-exposure, gamma, etc.) to create RGB data. The 
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eWARP block is a custom warping engine, which can apply complex geometric transformations to the video, followed by 
any OSD/drawing through the vector graphics, lastly, the video is output. Internal static random-access memory (SRAM) 
which ranges between 3 and 6 Mbytes, fulfills all system memory needs. At various points frame(s) can be grabbed, scaled 
(Scalar) and written to memory. The Computer Vision Processor is a highly parallelized, Single Instruction/Multiple Data 
(SIMD) type, DSP block, which performs all the computer vision processing, like object detection. A main processor, the 
Application CPU, performs the control functions, and can also be used for running algorithms. A second MIPI interface 
allows taking in a raw radar signal, which is processed through a hardware FFT block (in GW6x), the radar cube is then 
written to SRAM for additional processing by the Computer Vision Processor. The GW6x family includes 2x independent 
copies of the ISP and eWARP blocks, this allows independent ISP tuning and geometry transforms for the viewing video 
stream, and the video used for computer vision processing.

The indie processors have a small footprint in all aspects, with a size of ~10 x 10 mm and power ranging from 0.5 to 1.0 W, 
depending on resolution and features enabled. This makes them ideal for camera solutions on the edge. With the ability to 
take in a second input, of possibly different modality, they can also support specific fusion applications. All our software 
algorithms for this project were run either on the GW5x IC, or on the bit accurate simulator for the upcoming GW6x IC. The 
GW6x family also has a configuration with external DDR support, however we chose not to enable that configuration in 
order to keep the footprint minimal – our development did not rely on any external memory.

Vision Based Object Detector
In a time where automotive AI ubiquitously uses larger and larger models, rooted in deeper and deeper machine learning, 
with big neural nets (NN) dominating computer vision, we dared to resort back to a classical non-NN approach. The 
objective again is to make things as small as possible – whereas gigabytes of memory is common for central computing, 
we worked with merely 3-6 megabytes for an edge solution. In line with this, our vision-based detector is a GW5x/GW6x 
hardware-optimized version, based on pre-NN classical approaches of [4, 5]. It makes use of aggregate channel features 
(ACF), a multi-scale pyramid, combined with cascaded decision trees, trained using AdaBoost, for inference. 

The detector is depicted in Figure 2 and runs primarily on the DSP sub-processor.
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Figure 2: ACF vision detector.

Various optimizations were necessary to ensure all model data and intermediate results would fit within the on-board 
SRAM. Given all other processing needed, such as implementing the radar pipeline, this meant limiting the detector 
memory footprint to 1MB!  We briefly summarize the main steps and optimizations. Processing of the image made use of 
memory tiles, which allowed efficient reading/writing of data. Only a subset of pyramid levels was computed, the others 
being obtained by scaling of the computed levels [6]. All computed levels themselves were processed in three steps, 
corresponding to the left, middle and right of the image, each step done for all computed levels, before moving to the next 
step. Subsequent pyramid levels overwrote previous levels to conserve memory. The ACF feature descriptor was limited to 8 
channels: Y - the pixel luminance value, |M| - the gradient magnitude, H1 to H6 – a 6 bin histogram of oriented gradients. As 
for the pyramid, sub-sampling was also used to reduce the ACF feature vector size for an image window. An image window 
size of 64x128 was used and typically feature subsampling of 2. 
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The fundamental component of the cascaded inference stage was the binary tree shown below, along with the node 
descriptor and the operation at a node [7]:

Node Descriptor:
• Feature Index (FID)
• Threshold Value (THR)
• Confidence Scores (HS)
• Child Present (CHILD)
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Figure 3: Binary Decision Tree.

At each node, the feature value is compared with the node threshold. A tree is traversed until no child node is present. The 
final confidence of the tree is compared with a threshold, as well as aggregated across multiple trees. Figure 4 shows the 
aggregation and the multiple tree structure, note the threshold values are determined during model training. 
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Figure 4: Cascaded inference across multiple trees.

In general, the trees are not of uniform depth. A critical step in parallelizing the inference computation was to use trees 
all of the same depth. Based on our testing, we settled on a depth of 3, and approximately 2560 trees in total. These 
were trained with ~40 to 50K images. The output of the inference stage is a set of bounding boxes, often overlapping, and 
confidence scores. These boxes are reduced in number by using non-maximal suppression to retain only those with the 
highest confidence. The scores are normalized via sigmoid function to give a confidence value between 0 and 1, upon which 
a final decision can be made. 

Other important steps in the processing include warping, scaling and brightness adjustment. The lens for a backup camera 
is typically a fisheye lens (~180 degrees), whereas the detector expects perspectively corrected images. The eWARP© 
block, indie’s proprietary geometric transformation technology performs the perspective correction using a proprietary low 
latency, no frame store, architecture. The camera resolution is also large, in our case 1920x1080, which to conserve memory 
was scaled and cropped to 640x360, before processing by the computer vision processor. This can be again done by the 
eWARP block or the Scalar block. The eWARP block can also be used to create some of the pyramid levels, as different 
windows within a large frame. For detection in low light, experiments showed improved accuracy by S-curve brightness 
adjustment prior to running the detector. This could be done through the second ISP block for GW6x, without changing the 
viewing video stream. It can also be implemented on the DSP.

Our detector takes 40-60ms to execute, per frame, depending on content and number of trees, and requires ~1MB of 
memory.
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Radar Pipeline and Clustering
The radar pipeline is the standard set of steps for extracting a point cloud from a Frequency Modulated Continuous Wave 
Radar (FMCW) radar [8], followed by a clustering stage, and lastly mapping to a common coordinate system. These steps are 
shown in Figure 5.
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Figure 5: Radar processing and stages.

A 12-channel (4 receive x 3 transmit) FMCW radar was used. The ADC radar data can be brought in through the second MIPI 
input of the video processor. The most computation and memory-intensive steps here are the FFTs. The GW6x includes an 
FFT hardware block that performs both the range and Doppler FFTs. On GW5x, the DSP can be used for the FFTs, though 
this takes away cycles from the vision processing and reduces the overall FPS (frames per second) of the system. A total 
of ~3MB of memory is used by FFT computation for our system. The “cube” from each FFT stage overwrites the previous 
stage’s data. The range FFT consists of #chirps x #channels 1D FFTs, and the Doppler FFT consists of at most #samples x 
#channels 1D FFTs. Figure 6 illustrates the FFTs and data cubes. For these sizes, the hardware FFT completes in ~20ms.
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Figure 6: FFT data and processing.

The remaining stages, angle computation and target detection (CFAR, peak grouping) are less intensive, and can be 
performed on the DSP, without impacting substantially the vision detection processing. For a DSP speed of 1GHz, these 
stages can run in 5-10ms. The output of the standard pipeline is a cluster of points, each point a 5-vector of position [x, y, z], 
radial velocity, and intensity.

The point cloud is next filtered and clustered. The filtering eliminates specific points depending on their position, velocity 
and intensity, which are not likely to be a nearby object of interest. For example, points outside of 25m or >3m above the 
ground are not retained. The filtered points are clustered using the OPTICS algorithm [9], which is similar to the popular 
DBSCAN approach, but allows varying density using a variable neighborhood radius. For a typical backup scenario, 
the number of points to be clustered ranged from 50-100, hence the computational load for this stage is small. As the 
point vector contains three different units (3D position, velocity and intensity), clustering was done on the three metrics 
independently, and then combined afterward. The clusters obtained are also assigned labels if they are potential candidates 
for objects (pedestrians or bicycles) or not – this is a binary value of 1 or 0. Note these labels are not confidence scores, as 
no learning is done on the radar clusters. They are from an additional screening step, based on heuristics (such as intensity 
and spatial-related metrics), to further reduce the number of useful clusters. Those with label 0, can be dropped. The 
clustering stage runs on the DSP (computer vision processor) and completes in <5ms.

The last two stages map the clusters to the correct frames in anticipation of the fusion stage. First, the 3D positions are 
mapped to the camera’s 3D reference frame using 3D rotation and translation, which is obtained from the radar to camera 
extrinsic calibration. Lastly, to align the radar points with the detector bounding boxes, which sit in the perspective-
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corrected image, the 3D cluster points (in the camera’s 
reference frame) are mapped using the same perspective 
transformation that was applied by the eWARP engine to 
correct the camera fisheye input. Now the radar points lie 
in the same pixel image that contains the bounding boxes. 
As these mappings are simple math functions applied to a 
small number of points, the computation time is negligible. 
Combining the times from all stages, the radar processing 
completes in ~30-40ms on our GW6x processor (on GW5x 
without the hardware FFT, the time is longer), with a 
memory footprint of ~3-4MB.

A word on calibration. For fusion, the vision-radar system 
must be calibrated, meaning the camera’s intrinsic 
parameters are known, and the radar is extrinsically 
calibrated relative to the camera [10]. Various calibration 
software routines are available for this purpose. As an 
example, for camera intrinsic calibration, multiple images 
of a checkerboard pattern can be fed through the ROS 
camera calibration process. This will provide the required 
camera lens distortion model and the projection matrix. 
For extrinsic, a good radar corner reflector is placed in the 
overlapping FOV of both camera and radar, and several 
frames are recorded. The radar point from the reflector is 
mapped to the camera image, using the camera intrinsics 
and un-tuned extrinsics (3D rotation and translation) – say 
an identity. Then the extrinsics are tuned to have the radar 
reflector point fall on the reflector itself in the camera 
image. This is illustrated in Figure 7 below.

IntrinsicUn-tuned
Extrinsic

IntrinsicTuned
Extrinsic

Figure 7: Camera-Radar extrinsic calibration.

The process can be automated by having the camera 
automatically detect the radar corner reflector. The frames 
being fused should also be calibrated, or synchronized, in 
time. In the backup scenario we were studying, there were 
not any fast-moving scenes or objects. Furthermore, our 
radar FPS is relatively low (5 fps) compared to that of the 
camera (60 fps). Hence, we did not perform any temporal 
calibration, we simply selected camera frames closest in 
time to radar frames.

Simple Fusion Algorithm
Having obtained the bounding boxes with their confidence 
levels, and the radar 2D points with their labels, we 
can now fuse the results. This is a decision-level fusion. 
Typically, such fusion involves combining two independent 
probabilistic models, with some common classical 
approaches including Kalman filter, particle filter and Monte 
Carlo type methods. However, these methods have high 
computational complexity. Furthermore, they are Bayesian 
based, requiring knowledge of prior probabilities, which are 

often difficult to quantify. Hence, we use the more tractable 
Dempster-Shafer method to combine the confidence 
scores [11, 12]. To further simplify matters, we take the non-
conventional step of starting with vision-based detection 
as the main probability and having the radar detection 
supplement or confirm it. In particular, the radar mass 
functions are tied to the vision bounding boxes, and the 
combined scores are the revised confidences for the vision 
bounding box.
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Radar
Processing
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Shafer
Decision
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Figure 8: Simple decision-based fusion.

We provide some background of the theory as needed 
for our application. Dempster-Shafer is a general scheme 
for expressing uncertainty, whereby a set of propositions, 
instead of individual propositions, is assigned a probability-
like quantity called mass value, ranging between 0 and 
1. Let X be the universe of all the possibilities: X={PD, 
NO_PD}, here PD stands for pedestrian (or any other object 
trained for) detected, and NO_PD stands for pedestrian not 
detected. The power set is: 2X={ϕ,{PD},{NO_PD},X}. A mass 
function m(x) maps elements from the power set to a value 
in between 0 and 1 m:2X→[0,1]  such that m(ϕ) = 0, ∑Aϵ2

Xm(A) = 
1. Two different mass functions of the same universe can be 
combined using Dempster’s rule of combination: 

When two mass functions are in conflict, a metric called 
credibility is used to assign weights to them and combine 
using the above equation. We do not consider conflicts, as 
the radar mass function is treated as supplementary to the 
vision function. We define the mass functions corresponding 
to the two sensors as follows:

• Vision mass function:

mV (ϕ) = 0,  mV (PD)=βPD,  mV (NO_PD)=0,  mV (X) = 1-βPD

where βPD is the normalized vision (ACF) detector 
confidence score.

• Radar mass function:

- When there are no points inside the bounding box:

mR (ϕ) = 0,  mR (PD)= 0,  mR (NO_PD) = 1-αMD,   mR (X) = αMD

where αMD is the miss-detection (false-negative) 
probability.

- When there are N points inside the bounding box:

mR (ϕ)=0,  mR (PD)=1- αFD
N,  mR (NO_PD)=0,   mR (X)=αFD

N

where αFD is the false-detection (false-positive) probability.
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Both αMD and αFD are learnt values – ideally, they should 
be determined by training with the radar clusters against 
known object clusters. They may also be estimated to some 
extent from the cluster binary labels. However, given the 
limited data we had, this was not feasible, hence we used 
a conservative value of 0.5. It is important to note that our 
radar mass function is not truly an independent probability 
model, as it depends on the vision bounding box result – it is 
being used to supplement the vision result.

For each bounding box, the vision mass functions are 
computed using the vision confidence score (βPD). The 
number of radar points are determined inside the box: if 
zero, the radar mass functions are computed using the first 
rule, if N > 0, the radar mass functions are computed using 
the second rule. Last the combined mass function mV,R(PD) 
is computed using the Dempster rule, to give the combined, 
or fused, probability that the box contains an object of 
interest – in our case a pedestrian. This fusion procedure, 
also running on the DSP, is simple and its impact on the 
processing time (or memory needs) is inconsequential. 

Experiments and Results
Our fusion system was tested under both bright (daytime) 
and low (primarily nighttime) light conditions. We found 
during daytime, the vision detector alone was sufficient to 
detect pedestrians with good confidence (>=0.9) and low 
false positives, arguably the radar was not required during 
daytime. Under low light, the results changed considerably, 
with the vision confidence being insufficient (<0.8) and a 
higher false positive rate. Hence, we focused our efforts on 
low light situations. We note that missed detections (false 
negatives) by the vision detector, cannot be resolved by our 
fusion approach, as the radar was not independently trained 
for detection – with the radar mass functions tied to vision 
bounding boxes, it serves more to strengthen or weaken 
a vision detection. This can be improved by expanding 
the radar pipeline into a detector itself and training it for 
independent detection. The low light scenarios we studied 
consisted of correct vision detection with low confidence 
(<=0.8), and with zero or more false positives – the low 

confidence and false positives then being resolved by 
radar fusion. Training of our vision detector included both 
pedestrians, pedestrians with bicycles and bicycles alone, 
however, the detection window was kept at the same aspect 
ratio for simplicity. The images in Figure 9 summarize our 
results. Here the vision bounding boxes are in yellow or 
green, the radar points in red (a little hard to see), the 
vision confidence (from the ACF detector) is written above 
in yellow as V, the radar mass value, mR(PD), is written in 
red as R, and the combined score, using Dempster’s rule, in 
green as C. If the combined score is >=0.85, we treat it as 
a successful detection with good confidence and highlight 
the bounding box green. As in print the score may be hard to 
see on the image, they have also been captioned below each 
image for the green boxes. 

We have retained the full field of view (FOV) of the 
perspective image for display, to show the challenges in 
detecting under low light. In some images, as in 9a and 9b, 
the pedestrian is difficult to discern even with our natural 
human vision. Figures 9a to 9c show common cases where 
the vision detector locates an object, but the confidence 
score is low (<0.8). Once fused with the radar cluster points 
(small dots in red), any ambiguity is resolved, and we have 
a strong detection. It’s hard to see but 9c is a person on 
a bicycle, in a difficult background – it is also successfully 
detected by our system. In 9a points from another cluster 
(white dots in top left half) are also seen, but these are 
rejected by our filtering during clustering. Figures 9d to 
9f show the correct detection along with multiple false 
positives detections, all of which have the same low vision 
confidence score. The radar fusion strengthens the correct 
detection scores to successful detection, and eliminates 
the false detections, as sufficient valid cluster points are 
not present in those bounding boxes. Figures 9g and 9h 
show similar results for a person on a bicycle. Here we 
have multiple correct detections with low scores, due to 
the extended nature of the bicycle (recall we use the same 
aspect detection box), all of which become successful 
detections with the fusion, and the radar fusion also 
eliminates the false positives.

(a): V=0.69, R=1.00, C=1.00   (b): V=0.68, R=0.99, C=1.00
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(c): V=0.77, R=0.88, C=0.97 (d): V=0.77, R=0.97, C=0.99

(e): V=0.71, R=1.00, C=1.00        (f): V=0.72, R=0.98, C=1.00

(g): 0.74<=V<=0.78, 0.5<=R<=0.99, C>0.89 (h): 0.72<=V<=0.74, 0.50<=R<=0.97, C>0.84

Figure 9: Nighttime images showing vision detector bounding boxes, individual and fused confidence scores,  
all ambiguous results have been resolved by the fusion process. 

All computation for our system was done on the GW5x or GW6x processors, which are low power, small area SoCs, with no 
external DDR. As mentioned above, the vision detector uses ~1MB memory and takes ~40-60ms to process a frame, and the 
radar pipeline uses ~3-4MB memory, taking ~30-40ms (on GW6x). This gives a total memory requirement of ~4-5MB, a very 
modest amount in an age where gigabytes are often used, and a fused frame rate of ~10fps (~1/100ms), which is sufficient 
for low-speed scenarios (such as backup or parking). With a reasonable increase in compute capability, higher fps can be 
achieved for faster speed applications such as side e-mirrors.

Cooperative Radar
Radar and vision are key sensing modalities for ADAS and automated driving [13]. While vision provides great lateral 
resolution, radar inherently provides depth and radial velocity information. Lateral resolution though is the key weakness of 
a radar sensing modality. Further, due to the long wavelength, radar signals are reflected in a different manner. In typical 
drive scenarios most of the optical reflections are diffuse, while radar signals contain significantly more specular reflections. 
This leads to a much sparser point cloud output of the radar. For sensor fusion, the orthogonal nature of the two modalities 
is a great benefit. However, it also brings up the problem of aligning and matching the input of the different sources. This 
task becomes significantly easier when the number of detections and the lateral resolution of the radar increases and gets 
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closer to the optical detections. In theory, a very large radar or using a very large number of radar sensors can achieve this. 
This approach though is impractical due to excessive hardware requirements and the associated cost, power consumption 
and mounting space requirements. The work at hand thus focuses on extracting more information from existing radar 
sensors with a “cooperative radar” approach [14, 15]. 

Cooperative radar has two or more radar sensors operating in a loosely synchronized manner following the method in [15, 

16]. In a separate processing step the received radar signals are then aligned in such a way that the paths in between the 
sensors can be used. Figure 10 illustrates the principle for two sensors. The resulting additional path between the two 
radars is equivalent to using a third radar in the middle of the two radars with two times the resolution. 

Figure 10: Secondary radar principle of operation and resulting virtual radar.

Practical drive tests have been done with two radars, each having 6 transmit and 8 receive channels. The radar units were 
mounted in the front of a test vehicle. The resulting multi-perspective radars provided significantly higher point cloud 
density for extended objects and provided information missed by the single radars. Sample scenes depicted in Figure 11, 
highlight the achieved benefits.

Figure 11: Enhanced point cloud in test drives: Ground truth data and camera data shown,  
radar reflections from left radar in red, right radar in green and virtual radar in magenta.

In addition to the resolution benefit the loose coupling also allows extraction of the tangential velocity. Previously, only 
the radial velocity component was estimated. With the larger base between the two radars, the tangential velocity can be 
estimated as well. This results in faster conversion of tracking filters, reducing the latency for new objects in the field of 
view. Figure 12 shows a sample scene with a pedestrian crossing.
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Figure 12: Pedestrian crossing while driving, full velocity vector displayed with white line.

Conclusions and Improvements
We have presented a small footprint vision-radar fusion system for detection. Our system was specifically developed 
with slow speed, smart yet simple, automotive applications in mind. We focused on smart backup, and showed how 
pedestrians and bicycles, under challenging low light conditions, can be successfully detected with our approach and 
hardware implementation. As all processing was done inside the camera video processor, such a system can be placed 
at any location on the vehicle that can accommodate a camera – this makes our system well-suited for edge or zonal 
configurations. Further improvements can readily be made by modestly increasing the hardware resources (processing 
capability and memory) and expanding the radar/fusion pipeline. The radar sub-system can be improved by converting it 
to a detector, similar to the vision detector. This means extracting features from the radar data and training them to build 
a classifier. This will give us an independent radar detector and subsequent mass function, implying missed detections 
by the vision detector, could possibly be independently detected by the radar. Instead of decision level fusion, more 
sophisticated feature level fusion of vision and radar data could be considered. Temporal tracking can also be added to 
further enhance performance. All these improvements are well understood and well used in the industry, when deployed 
in large complicated automotive AI systems. We have deliberately stayed away from neural networks for processing/
memory requirements, but using CNNs and other modern machine learning architectures allows one to handle much 
more complicated fusion applications. We also hope to study vision fusion with our cooperative radar, while maintaining a 
small footprint. With the denser points, vector velocities, and adding a radar classifier, this should give further increases in 
detection accuracy and robustness. 
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